
1Jim Guggemos

Linux Netfilter/IPTables Host-Based
Firewall Basics

Jim Guggemos
jaguggemos@lbl.gov

Unix Systems Engineer
Information Technologies & Services Division

July 16, 2002

2Jim Guggemos

Overview

• Internet Networking (TCP, UDP, IP, ICMP)
• What is a Host-Based Firewall?
• Why Should I Use a Host-Based Firewall?
• Firewall Basics
• Stateful (Dynamic) Packet Filtering
• IPTables Basics
• Building a Usable Stand-Alone Firewall Ruleset
• Diagnosing Firewall Problems
• References

3Jim Guggemos

Internet Networking
Protocol Stack & Sample Connection

Protocol Stack
Application Layer

Client and Server
Programs

(e.g. HTTP, SMTP)

Transport Layer
TCP and UDP Protocols

Network Layer
IP Protocol, ICMP

Messages

Link Layer
Ethernet Driver,
Loopback Driver

Physical Layer
Copper Wire, Fiberoptic
Cable, Microwave, RF

Application
HTTP

Transport
TCP

PORT: 45555

Network
IP

ADDR: 128.3.11.11

Link
Ethernet

00:50:56:A5:0B:99

Physical
100Mbps Twisted-Pair

Network
ADDR: 128.3.11.1
ADDR: 128.3.128.1

Link
Ethernet

00:06:D6:75:1B:9A

Physical
100Mbps Twisted-Pair

Network
IP

ADDR: 128.3.128.200

Link
Ethernet

80:00:20:A6:92:12

Physical
1Gbps Fiberoptic

Link
Ethernet

00:08:A2:3A:15:07

Physical
1Gbps Fiberoptic

Application
HTTP

Transport
TCP

PORT: 80

W o r k s t a t i o n N e t w o r k R o u t e r W eb Se rve r
Actual Data Flow

Apparent Data Flow

Sample HTTP Connection

4Jim Guggemos

Application

Transport

Network

Link

Physical

Network

Link

Physical

Link

Physical

Application

Transport

Network

Link

Physical

Internet Networking
Application Layer

• End-points communicate with application-
specific protocol:
—e.g.: HTTP, SMTP, POP, IMAP, NTP, SSH

• Application asks transport layer to deal with
establishing a connection, ensuring reliability
(TCP only).

Application Layer
Client and Server

Programs
(e.g. HTTP, SMTP)

5Jim Guggemos

Transport Layer
TCP and UDP Protocols

Application

Transport

Network

Link

Physical

Network

Link

Physical

Link

Physical

Application

Transport

Network

Link

Physical

Internet Networking
Transport Layer

• End-points communicate with either TCP or UDP protocols.
• End-points are identified by port numbers (1 – 65535).
• A UDP connection is connectionless (neither packet arrival

nor packet order is guaranteed).
—e.g.: DNS, NFS, DHCP, video streaming

• A TCP connection is connection-oriented (if the connection
is establish, packet arrival and order are guaranteed).
—e.g.: HTTP, Telnet, SMTP, SSH

6Jim Guggemos

Application

Transport

Network

Link

Physical

Network

Link

Physical

Link

Physical

Application

Transport

Network

Link

Physical

Network Layer
IP Protocol, ICMP

Messages

Internet Networking
Network Layer

• Network layer provides global host identification
via internet-wide unique IP addresses.

• Also provides routing functionality.
• End-points are aware of intermediate “hops”.
• ICMP packets provide control and status

messages (sent between IP layers, not
applications).

7Jim Guggemos

Link Layer
Ethernet Driver,
Loopback Driver

Physical Layer
Copper Wire, Fiberoptic
Cable, Microwave, RF

Application

Transport

Network

Link

Physical

Network

Link

Physical

Link

Physical

Application

Transport

Network

Link

Physical

Internet Networking
Link & Physical Layers

• It’s not always easy to separate these into 2
layers – they are sometimes intricately linked.

• Link level – the lowest level of the protocol stack
—Each host adapter only knows about other

hosts using the same protocol on the wire.
—Protocols: Ethernet, ATM, Token Ring, FDDI

• Physical level – the actual media used to send
signals between hosts.
—e.g.: Twisted-pair copper, fiber, microwave, RF

8Jim Guggemos

Internet Networking
Sample Connection Revisited

Protocol Stack
Application Layer

Client and Server
Programs

(e.g. HTTP, SMTP)

Transport Layer
TCP and UDP Protocols

Network Layer
IP Protocol, ICMP

Messages

Link Layer
Ethernet Driver,
Loopback Driver

Physical Layer
Copper Wire, Fiberoptic
Cable, Microwave, RF

Application
HTTP

Transport
TCP

PORT: 45555

Network
IP

ADDR: 128.3.11.11

Link
Ethernet

00:50:56:A5:0B:99

Physical
100Mbps Twisted-Pair

Network
ADDR: 128.3.11.1
ADDR: 128.3.128.1

Link
Ethernet

00:06:D6:75:1B:9A

Physical
100Mbps Twisted-Pair

Network
IP

ADDR: 128.3.128.200

Link
Ethernet

80:00:20:A6:92:12

Physical
1Gbps Fiberoptic

Link
Ethernet

00:08:A2:3A:15:07

Physical
1Gbps Fiberoptic

Application
HTTP

Transport
TCP

PORT: 80

W o r k s t a t i o n N e t w o r k R o u t e r W eb Se rve r
Actual Data Flow

Apparent Data Flow

Sample HTTP Connection

9Jim Guggemos

Internet Networking
Internet Control Message Protocol

• ICMP packets are typically used to test if a host is
alive, report errors and pass routing information.

• An ICMP packet is sent to a particular IP address,
not to a port. It is handled by the network layer.

• ICMP packets are identified by type and, in some
cases, codes (sub-type). (see RFC 1700 for list)

• ICMP packets are raw datagrams – they are
unreliable.

• Most common user usage would be ping.
—Host A sends an ICMP echo-request (type 8)

packet to Host B.
—Host B responds with an ICMP echo-reply

(type 0) packet send to Host A.

10Jim Guggemos

Internet Networking
Internet Control Message Protocol

• Another common ICMP type is destination-
unreachable (type 3).
—There are many different sub-types, the most

common are host unreachable and port
unreachable.

—You see port unreachable ICMP packets as a
result of trying to connect to a port (normally
UDP) that has no listening process.

• We care about ICMP packets because some are
necessary and some can be misused for DoS
attacks or worse – we need to weed out the ones
we don’t want.

11Jim Guggemos

Internet Networking
User Datagram Protocol

• UDP packets are connectionless, unreliable.
• Since no connection is created, UDP is efficient.
• A UDP packet is sent from a source (IP address,

port) to a destination (IP address, port).
• There is no acknowledgement required; the

application protocol must implement its own
acknowledgement protocol if it is so desired.

• At the destination host, any of these may happen:
—a UDP reply may be sent by an application
—a port-unreachable ICMP may sent by the OS
—nothing may be sent in reply

• Note that it is hard to tell if a UDP port is open,
filtered, or if the host is not responding.

12Jim Guggemos

Host A Host B
UDP Packet
From: (A, 32000)
To: (B, 53)

Internet Networking
User Datagram Protocol

• UDP PORT OPEN: A DNS request
sent to host B receives a properly
formatted reply.

Host A Host B
UDP Packet
From: (A, 32000)
To: (B, 53)
UDP Packet
From: (B, 53)
To: (A, 32000)

Host A Host B
UDP Packet
From: (A, 32000)
To: (B, 53)
ICMP Type: 3,3
From: B
To: A

• UDP PORT STATE UNKNOWN:
No reply is received; either host B
is down, the DNS server choose
not to respond, or port is filtered.

• UDP PORT CLOSED: A DNS
request sent to host B receives a
port-unreachable (type 3, code 3)
ICMP packet.

13Jim Guggemos

Internet Networking
Transmission Control Protocol

• TCP packets are connection-oriented, reliable,
and order-preserving.

• Before any data is sent over TCP, a connection is
created between the two ends.

• A TCP connection is established between a
source (IP address, port) and a destination (IP
address, port). (Note: TCP and UDP ports are
distinct.)

• The TCP transport layer ensures reliability and
order – the application can assume reliability.

• Connections are established using a 3-way
handshaking procedure.

14Jim Guggemos

Internet Networking
Transmission Control Protocol

• Diagram shows the 3-way
handshaking for both
establishing a connection and
tearing down a connection.

• Understanding TCP header flags
is very important when
designing firewall rules.

• Many attacks involve using TCP
packets with improper flags.

• Note a TCP packet with no flags
set is never a valid packet.

Host A Host B
TCP Packet
Syn Request
Flags: SYN
TCP Packet
Syn Ack, Syn Req
Flags: SYN, ACK
TCP Packet
Syn Ack
Flags: ACK
TCP Packet
Data....
Flags: ACK
TCP Packet
Last Data, Fin
Flags: ACK, FIN
TCP Packet
Ack Last Data
Flags: ACK
TCP Packet
Fin Ack, Fin
Flags: ACK, FIN
TCP Packet
Fin Ack
Flags: ACK

Establish
Connection

Tear Down
Connection

Data...

15Jim Guggemos

Internet Networking
Transmission Control Protocol

• If a TCP packet arrives that apparently is not
intended for the current session, a RST packet is
sent in reply in order to reset the connection.

• This is what happens when a SYN packet is sent
to try to open a connection to a closed port. (Port
unreachable ICMP will also get the job done, but
RFC 793 specifies a RST TCP packet in this case.)

• Unlike UDP traffic, no response to a TCP packet
is an unexpected condition resulting in a timeout.
—If the host is up, it indicates a network error or

the fact that the port is filtered.
• TCP port scans more accurately reveal open

ports than UDP scans because a packet sent to
an open TCP port must result in a reply.

16Jim Guggemos

Internet Networking
Miscellaneous

• Connections to well-known services are
established by connecting to well-known
published ports.

• UNIX hosts identify well-known ports via
/etc/services.

• The IP header is self-identifying – an 8-bit
protocol field identifies the protocol for this
packet.

• UNIX hosts identify protocol via /etc/protocols.
—It is sometimes useful to know that ICMP=1,

TCP=6, and UDP=17; it shows up occasionally
when dealing with iptables.

17Jim Guggemos

What is a Host-Based Firewall?

• In this context, a host-based firewall refers to a
set of rules on an individual host that defines
exactly what network traffic will be permitted in
and out of that host.

• It is a packet filter that, based on certain
matching criteria, decides on a per-packet basis
whether to allow the packet through or drop the
packet.

• It is normally implemented as part of the
operating system at the network and transport
layers of the protocol stack.

• In Linux, it is implemented with kernel modules
and user-space tools.

18Jim Guggemos

Why Should I Use a Host-Based
Firewall?

• Security and Privacy
—Port scans and exploits are frequent on machines

connected to the Internet.
—The less an outsider can determine about a host, the

harder it is to compromise.
• A daemon for a required service may not be configurable to

listen only to 127.0.0.1.
— lpd – required even for local printing.
—ntpd, bind – there are limited configuration options to

restrict who they will talk to and these daemons often
have exploits.

• Applications may listen on ports without you knowing
about it – they may have vulnerabilities.
—e.g.: X and many X/KDE/Gnome related applications.

19Jim Guggemos

Why Should I Use a Host-Based
Firewall?

• Even if an application or service provides host-
based access restrictions (e.g. TCP wrappers) a
connection is established for a short time.
—For example, even if bind is configured to not

respond to certain requests, it still receives the
request. If bind has a buffer overflow
vulnerability, it still may be susceptible.

• If the ports for these services are filtered, the
packets are stopped in the network layer and are
not passed up to the application or daemon.

• This can also help reduce the effects of being
flooded with bad packets since it is more efficient
to discard the packets as early as possible.

20Jim Guggemos

Why Should I Use a Host-Based
Firewall?

• Should I used a host-based firewall even if our
corporate network is behind a firewall?
—Here are some reasons:

• If some machine inside the corporate firewall gets
compromised, the corporate firewall is useless.

• The corporate firewall may be more permissive than
is required for your host.

– It’s hard to make a ruleset for a corporate firewall that is
right for every host on the network.

– It should be easier to determine what traffic should and
should not be allowed for your host.

• Protects your host from possible mischievous
behavior from inside the organization.

21Jim Guggemos

Firewall Basics

• A packet-filtering firewall will, on a per-packet basis,
attempt to match the packet with one or more rules in a
ruleset.

• The match criteria could be anything that the firewall code
supports. Some of the more common criteria are:
—Source or destination host or net IP addresses
—Protocol, optionally including port(s) (for TCP, UDP) or

type and code (for ICMP)
—TCP header flags (e.g., SYN, RST, ACK…)
—MAC (hardware) address(es)
—Network interface
—Packet size
—Frequency (rate-limiting)

22Jim Guggemos

Firewall Basics

• When a packet matches a rule, generally one of three
actions is taken:
—The packet is accepted and passed in or out.
—The packet is dropped as if it never existed (the packet

is “blackholed”).
—Some kind of rejection notification is sent to the source

of the packet (like a port unreachable ICMP or a TCP
RST packet).

• Most packet filters have separate rulesets for:
— Input packets – those coming into the host.
—Output packets – those leaving the host.
—Forwarded packets – those that arrive at the host on one

adapter destined for a host on a different adapter (if the
host is routing).

23Jim Guggemos

Stateful (Dynamic) Packet Filtering

• All of the criteria described so far are stateless –
they don’t depend upon the acceptance or denial
of packets in the past.
—A firewall is termed a static packet filter if only

stateless criteria are used (e.g., ipfw, ipchains).
• There are many cases when remembering how a

previous packet was handled is useful in
determining how to handle future packets.
—If you want to limit incoming TCP packets to

responses from TCP connections initiated
from the host, you have two choices:

• Accept all incoming TCP packets except those that
contain only the SYN flag; drop all SYN packets.

24Jim Guggemos

Stateful (Dynamic) Packet Filtering

• Accept all incoming TCP packets that have the
source (IP, port) and destination (IP, port) of a
successful SYN packet sent out with the opposite
end-points.

• Stateful or dynamic packet filters maintain a state
table of accepted packets.

• Entries in this state table can be used as
matching criteria for other rules.

• TCP entries in state table will exist for the
duration of the connection and are removed when
the connection is closed or some large time limit
expires.

• Most dynamic packet filters keep state on
protocols that are stateless (e.g., UDP and ICMP).

25Jim Guggemos

Stateful (Dynamic) Packet Filtering

• UDP entries in the state table have a relatively
short timeout since there is no notion of
connection with UDP packets.

• Stateful inspection of packets allows for a
simplified and optimized ruleset.
—Input rulesets only need explicit allow rules for

services running on the host (e.g., web server).
—By putting the rule that matches packets

related to the state table entries near the head
of the ruleset, traversal of most of the ruleset
is avoided.

• IPTables, implemented in Linux since the 2.4
kernel, is a stateful packet filter.

26Jim Guggemos

IPTables Basics
Rules, Chains, and Actions

• IPTables organizes rules into chains.
• When a packet arrives at a chain to be matched,

the rules are processed one at a time from the
first rule to the last.

• When a match occurs, an action (or target)
specified by the rule is taken.
—The action may be terminal; i.e., drop the

packet or accept the packet.
—The action may not be terminal; i.e., log the

packet or jump to another chain.
• If a packet matches a terminal action, processing

stops there; rule order is first-come, first-served.

27Jim Guggemos

IPTables Basics
Rules, Chains, and Actions

• There are three built-in “filter” chains in IPTables:
INPUT, OUTPUT, and FORWARD.

• If processing reaches the end of a built-in chain,
a default policy indicates what will become of the
packet (either it is accepted or dropped).

• If processing reaches
the end of any other
(user-defined) chain, it
will return to the chain
from whence it came
and continue where it
left off.

rule3 matched; jump to MYCHAIN

no rules in MYCHAIN matched;
return to INPUT chain

rule1... : ACCEPT

rule2... : ACCEPT

rule3... : DROP

MYCHAIN chain
rule1... : DROP

rule2... : DROP

rule3... : MYCHAIN

rule4... : ACCEPT

rule5... : DROP

Default Policy:
DROP

INPUT chain

no matching rules had terminal actions; fall
through to default policy for INPUT chain.

28Jim Guggemos

IPTables Basics
Rules, Chains, and Actions

• All incoming packets, including those on the loopback
interface, must make it through the INPUT chain.

• As such, most of the rules you will write for a stand-alone
host-based filewall will be part of the INPUT chain.

• All packets get filtered once (except loopback packets,
which are filtered twice).

• We won’t discuss NAT here – the NAT boxes above will
essentially be transparent.

Netfilter packet traversal, including NAT routing.
(Figure based on "Linux 2.4 Packet Filtering HOWTO" and "Linux 2.4 NAT HOWTO".)

Routing
Source

NAT
Post-routing

Local
Processes

FORWARD
Chain

Drop

Incoming
Packets

Dest ination
NAT

Pre-rout ing

INPUT
Chain

OUTPUT
Chain

DropDrop Drop

Outgoing
Packets

29Jim Guggemos

IPTables Basics
Rules, Chains, and Actions

• As indicated before, there are 3 built-in “filter”
table chains: INPUT, OUTPUT, and FORWARD.

• However, IPTables has two other packet
matching tables – one used for NAT, the other for
specialized packet alterations (called “mangle”).

• The “nat” table has 3 built-in chains: PREROUTING,
POSTROUTING, and OUTPUT.

• The “mangle” table has 2 built-in chains:
PREROUTING, and OUTPUT.

• We won’t discuss these except to note that if you
are not routing or doing NAT on your host, you’ll
want to make sure the default policy for the built-
in “nat” chains is ACCEPT.

30Jim Guggemos

IPTables Basics
Rules, Chains, and Actions

• IPTables is built on modules – both kernel modules
(support for the main ip_filter module) and user-space
modules (for the iptables program).

• There are modules to provide support for matching criteria
and modules that implement targets (actions).

• The only built-in targets are ACCEPT and DROP.
• Other useful targets are:

— user-defined chains.
— LOG – logs the packet to syslog (kernel facility). (non-

terminal target – processing continues after logging.)
— REJECT – drops the packet and sends a port

unreachable ICMP or RST TCP reply.
• There are interesting and experimental matching and target

modules; since they are easily written as modules, I expect
the open source community to be very creative here.

31Jim Guggemos

IPTables Basics
Command Syntax

• All user interaction with the netfilter kernel
modules is done through the user-space tool
called iptables.

• iptables-save and iptables-restore are
additional tools that will dump and restore the
current netfilter tables via iptables. These tools
are used by RedHat’s default /etc/init.d script.

• A rule is constructed by specifying a command, a
matching criteria and a target:

Drop incoming packets on eth0 that have a "loopback" source address.

iptables -A INPUT -i eth0 -s 127.0.0.0/8 -j DROP

Command:
Append to INPUT chain

Matching Criteria:
Source IP=127.0.0.0/8

Matching Criteria:
Incoming on interface eth0

Target:
Drop packet

32Jim Guggemos

IPTables Basics
Command Syntax

Basic commands:

Deletes the rule at the given position number.-D <chain> <rule num>

Insert the rule before the specified rule number
(default rule number is 1 – inserts at chain head).

-I <chain> [<rule num>]
{rule…}

Resets the packet and byte counters.-Z

Append the rule to the end of the chain.-A <chain> {rule…}

Sets the default policy for the built-in chain.-P <chain> <policy>

DESCRIPTIONOPTION

Lists iptables commands and options. If
proceeded by a command, list syntax and options
for that command. (e.g.: -m limit -h)

-h | <some command> -h

Delete user-defined chain, or all if none specified.-X [<chain>]

Flushes the chain, or all chains if none specified.-F [<chain>]
Create a new user-defined chain.-N <chain>

List rules; -n = numeric; -v = verbose; -x = exact
counter values; --line-numbers = rule number

-L [<chain>] [-n] [-v]
[-x] [--line-numbers]

33Jim Guggemos

IPTables Basics
Command Syntax

Basic matching criteria and other options:

Match second or further fragments only.[!] -f | --fragment

Use extended matching module; each module may
have its own set of extra options.

-m <match module> …

Specifies host or network destination address in
the packet’s IP header.

-d [!] <addr>[/<mask>]

DESCRIPTIONOPTION

Specifies packet matching table command should
operate on: filter (default), nat, or mangle.

-t <table>

Specifies host or network source address in the
packet’s IP header.

-s [!] <addr>[/<mask>]

Specifies IP protocol the rule applies to; can be
tcp, udp, icmp, all or any numeric value.

-p [!] <proto>

For outgoing packets, specify the interface name
that the rule applies to. [OUTPUT, FORWARD]

-o [!] <interface>

For incoming packets, specify the interface name
that the rule applies to. [INPUT, FORWARD]

-i [!] <interface>

34Jim Guggemos

IPTables Basics
Command Syntax

TCP, UDP, and ICMP additional matching criteria:
DESCRIPTION-p tcp OPTIONS

The SYN flag must be set.[!] --syn

Tests the bits in the mask list. The bits in the set
list must be set for this option to match.

--tcp-flags [!]
<mask>[,<mask>]*
<set>[,<set>]*

Specifies destination port or range of ports.--dport [!]
<port>[:<port>]

Specifies source port or range of ports.--sport [!]
<port>[:<port>]

DESCRIPTION-p udp OPTIONS

Specifies destination port or range of ports.--dport [!]
<port>[:<port>]

Specifies source port or range of ports.--sport [!]
<port>[:<port>]

DESCRIPTION-p icmp OPTIONS

Specifies ICMP type name or number.--icmp-type [!] <type>

35Jim Guggemos

IPTables Basics
Command Syntax

State matching criteria:
DESCRIPTION-m state OPTIONS

Matches if the connection state is one in the list.
state = NEW, ESTABLISHED, RELATED, INVALID.

--state
<state>[,<state>]*

Matches if the packet is starting a new connection but is
associated with an existing connection, such as an FTP data
transfer (requires FTP conntrack module) or an ICMP error.

RELATED

Matches if the packet is associated with a connection that has
seen packets in both directions. This refers to ongoing TCP
ACK packets after the connection is established; subsequent
UDP datagrams exchanged between the same hosts and ports;
certain ICMP pairs, like echo-reply in response to a previous
echo-request.

ESTABLISHED

Matches if the packet starts a new connection or is otherwise
associated with a connection that has not been seen in both
directions.

NEW
DESCRIPTIONSTATE

Matches if the packet is associated with no known connection.INVALID

36Jim Guggemos

IPTables Basics
Command Syntax

Multiport, mac, and limit matching criteria:
DESCRIPTION-m multiport OPTIONS

Source and destination ports are equal and they
match a port in the list

--port <port>[,<port>]*

Specifies destination port(s).--destination-port
<port>[,<port>]*

Specifies source port(s).--source-port
<port>[,<port>]*

DESCRIPTION-m mac OPTIONS

Matches the ethernet hardware source address.--mac-source [!] <addr>

Maximum number of packets to match within the
given time frame (eg, 3/second) (default: 3/hour).

--limit <rate>
DESCRIPTION-m limit OPTIONS

Maximum number of initial packets to match
before applying the limit (default: 5).

--limit-burst <number>

37Jim Guggemos

IPTables Basics
Command Syntax

Targets:

Drops packet but sends a reply of some sort (by default, an
ICMP port-unreachable message).

-j REJECT

Logs the packet to syslog, kernel facility. Processing
continues to next rule in chain after the packet is logged.

-j LOG

Send packet through <chain>.-j <chain>

DESCRIPTIONTARGET

Inverts source and destination fields in IP header and
retransmits the packet. (experimental, demo)

-j MIRROR

Packet is dropped as if it was never sent.-j DROP
Packet is accepted and passed through.-j ACCEPT

38Jim Guggemos

IPTables Basics
Command Syntax

REJECT and LOG target options:
DESCRIPTION-j REJECT OPTIONS

Can be used to return an echo-reply to an
echo-request without forwarding to actual
target host.

--reject-with echo-reply

Incoming TCP packets can be rejected with
the RFC specified TCP RST packet.

--reject-with tcp-reset

Specify other ICMP type 3 (unreachable)
message; default is port-unreachable.

--reject-with <ICMP type 3>

Includes any IP header options in log.--log-ip-options

Prepend the quoted string at the start of the log
message for this rule.

--log-prefix
<“descriptive string”>

Includes the TCP sequence number in log.--log-tcp-sequence

Syslog log level (default: warn (4)).--log-level <syslog lvl>
DESCRIPTION-j LOG OPTIONS

Includes any TCP header options in log.--log-tcp-options

39Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset

• When building up a ruleset, you need to
determine:
—What services do you need to run (ssh, http)?
—Do any of your services require RPC?
—Do you need to share files with NFS (either as

a client or server)? (NFS uses RPC.)
—How restrictive do you want to be?
—How much information do you want to share?
—Does your organization require any specific

ports, services, or behavior (like not dropping
packets)?

—Are you part of an NIS domain?
—Do you use DHCP for a dynamic IP address?

40Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset

• Assumptions for this example:
—We want to be restrictive. We can add things

later.
—We want privacy.
—We don’t use NFS, NIS, or any other RPC

services.
—We have a fixed IP address (no DHCP).
—We want ssh enabled from anywhere.
—We want httpd enabled from “on-site”.
—We want to log dropped packets.
—Our organization doesn’t have any special

restrictions.

41Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset

• Our host:
—IP address: 12.5.7.15
—Netmask: 255.255.255.0 (24)
—Gateway: 12.5.7.1
—“on-site” networks: 12.5.7.0/24, 12.5.8.0/24

42Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset (Example 1/6)

• First off, remove pre-existing rules and chains:
iptables -F # flushes all "filter" chains
iptables -X # deletes all user-defined "filter" chains
iptables -t nat -F # flushes all "nat" chains
iptables -t mangle -F # flushes all "mangle" chains

• Then set our default policies:
iptables -P INPUT DROP
iptables -P FORWARD DROP
iptables -P OUTPUT ACCEPT
iptables -t nat -P PREROUTING ACCEPT
iptables -t nat -P POSTROUTING ACCEPT
iptables -t nat -P OUTPUT ACCEPT

• Next we are going to create our chains:
iptables -N EXT-IN # Packets not from “on-site” go here
iptables -N ONSITE-IN # Packets from “on-site” go here
iptables -N SPOOF # Checks for spoofed IP addresses
iptables -N SCAN # Checks for bad TCP flags (funny port scans)
iptables -N ICMP # Narrows down on the ICMP message we want

43Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset (Example 2/6)

• Since logging and dropping a packet actually takes two
rules, we create special chains for logging and dropping
packets. We also create a chain with different description
strings so that we can differentiate them in the log file.

iptables -N SPOOFDROP # Where SPOOF packets are logged and dropped
iptables -A SPOOFDROP -j LOG --log-prefix "SPOOF DROP " --log-

ip-options --log-tcp-options --log-tcp-sequence
iptables -A SPOOFDROP -j DROP

• We will create chains with the exact same rules (rules are
quite uninteresting and very small…):

iptables -N SCANDROP # Where SCAN packets are logged and dropped
iptables -A SCANDROP -j LOG --log-prefix "SCAN DROP " --log-ip-options --log-tcp-options --log-tcp-sequence
iptables -A SCANDROP -j DROP

iptables -N ICMPDROP # Where bad ICMP packets are logged and dropped
iptables -A ICMPDROP -j LOG --log-prefix "ICMP DROP " --log-ip-options --log-tcp-options --log-tcp-sequence
iptables -A ICMPDROP -j DROP

iptables -N POLICYLOG # Log “POLICY” drop before POLICY is enforced
iptables -A POLICYLOG -j LOG --log-prefix "POLICY DROP " --log-ip-options --log-tcp-options --log-tcp-sequence

iptables -N INVALDROP # Where INVALID state pkts are logged and dropped
iptables -A INVALDROP -j LOG --log-prefix "INVALID DROP " --log-ip-options --log-tcp-options --log-tcp-sequence
iptables -A INVALDROP -j DROP

iptables -N EXTDROP # Leftover EXT-IN pkts are logged and dropped
iptables -A EXTDROP -j LOG --log-prefix “EXT-IN DROP " --log-ip-options --log-tcp-options --log-tcp-sequence
iptables -A EXTDROP -j DROP

44Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset (Example 3/6)

• We begin by defining the INPUT chain:
iptables -A INPUT -i lo -j ACCEPT # Accept all incoming packets on loopback
iptables -A INPUT -p tcp -j SCAN # Check all TCP packets for bad flags
iptables -A INPUT -i eth0 -j SPOOF # Check all eth0 packets for spoofing
Accept all established/related packets
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j

ACCEPT
Log and drop INVALID state packets
iptables -A INPUT -m state --state INVALID -j INVALDROP
Send on-site packets to ONSITE-IN
iptables -A INPUT -s 12.5.7.0/24 -d 12.5.7.15 -i eth0 -j

ONSITE-IN
iptables -A INPUT -s 12.5.8.0/24 -d 12.5.7.15 -i eth0 -j

ONSITE-IN
iptables -A INPUT -i eth0 -j EXT-IN # Send all other eth0 packets to EXT-IN
iptables -A INPUT -p icmp -i eth0 -j ICMP # Check for bad ICMP
iptables -A INPUT -j POLICYLOG # Log that it is to be dropped by policy

45Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset (Example 4/6)

• Now define the IP address SPOOF chain (remember this is
used only for packets that arrive on the eth0 interface):

iptables -A SPOOF -s 12.5.7.15 -j SPOOFDROP # Our IP as src
iptables -A SPOOF -s 10.0.0.0/8 -j SPOOFDROP # Class A private src
iptables -A SPOOF -s 172.16.0.0/12 -j SPOOFDROP # Class B private src
iptables -A SPOOF -s 192.168.0.0/16 -j SPOOFDROP # Class C private src
iptables -A SPOOF -s 224.0.0.0/4 -j SPOOFDROP # Multicast src
iptables -A SPOOF –p ! udp –d 224.0.0.0/4 -j SPOOFDROP # !udp mcast
iptables -A SPOOF -s 240.0.0.0/5 -j SPOOFDROP # Class E (reserved)
iptables -A SPOOF -s 127.0.0.0/8 -j SPOOFDROP # loopback
iptables -A SPOOF -s 169.254.0.0/16 -j SPOOFDROP # Link local networks
iptables -A SPOOF -s 192.0.2.0/24 -j SPOOFDROP # TEST-NET
iptables -A SPOOF -s 255.255.255.255/32 -j SPOOFDROP # Bcast dest as src
iptables -A SPOOF -d 0.0.0.0/32 -j SPOOFDROP # Bcast src as dest

• Note that if your IP address is on a private subnet, you will
have to modify these rules so you don’t drop them!

46Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset (Example 5/6)

• Now define the SCAN chain that checks for bad TCP flags:
iptables -A SCAN -p tcp --tcp-flags ALL NONE -j SCANDROP
iptables -A SCAN -p tcp --tcp-flags SYN,FIN SYN,FIN -j SCANDROP
iptables -A SCAN -p tcp --tcp-flags SYN,RST SYN,RST -j SCANDROP
iptables -A SCAN -p tcp --tcp-flags FIN,RST FIN,RST -j SCANDROP
iptables -A SCAN -p tcp --tcp-flags ACK,FIN FIN -j SCANDROP
iptables -A SCAN -p tcp --tcp-flags ACK,PSH PSH -j SCANDROP
iptables -A SCAN -p tcp --tcp-flags ACK,URG URG -j SCANDROP

• Check for ICMP packets we want and drop the rest:
iptables -A ICMP --fragment -p icmp -j ICMPDROP
iptables -A ICMP -p icmp --icmp-type source-quench -j ACCEPT
iptables -A ICMP -p icmp --icmp-type parameter-problem -j ACCEPT
iptables -A ICMP -p icmp --icmp-type destination-unreachable -j

ACCEPT
iptables -A ICMP -p icmp --icmp-type time-exceeded -j ACCEPT
iptables -A ICMP -p icmp --icmp-type echo-request -j ACCEPT
iptables -A ICMP -j ICMPDROP

• Note that source-quench can be used for DoS attack but are still
sometimes used for flow-control on LANs.

47Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset (Example 6/6)

• Now define rules for packets from “on-site”:
Accept all HTTP (SYN) packets from on site; the rest of the traffic is handled by ESTABLISHED rule.
iptables -A ONSITE-IN -p tcp --dport 80 --syn -m state --state

NEW -j ACCEPT

• Finally, we finish with the rules for other external packets:
iptables -A EXT-IN -p tcp --dport 22 –-syn -m state --state NEW -

j ACCEPT
iptables -A EXT-IN -p tcp --dport 113 -j REJECT --reject-with

tcp-reset
iptables -A EXT-IN -p tcp -j EXTDROP
iptables -A EXT-IN -p udp -j EXTDROP

• The port 113 REJECT is to allow ident requests to fail nicely.
• Even though the default policy would drop the remaining tcp

and udp packets, I do it explicitly so it is logged as an external
packet that I didn’t want to accept.

48Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset

• Why doesn’t my FTP client work?
—Passive FTP should work fine here because of

the ESTABLISHED rule in the INPUT chain.
—Active (PORT) FTP, however, will not work

since that requires the creation of a data
channel from the server back to the client.

—Thankfully, you can load a module that fixes
this – it adds functionality to the RELATED
state that allows an active FTP data
connection back from the server.
modprobe ip_conntrack_ftp

—This needs to be done sometime before
attempting an active FTP connection.

49Jim Guggemos

Building a Usable Stand-Alone
Firewall Ruleset

• Yeah, but how do I allow an FTP server even
though I know it is a security risk?
—Simply adding a rule that allows the FTP

command channel port through will work for
active FTP (this needs to go before the
EXTDROP rules in the EXT-IN chain).

iptables -A EXT-IN -p tcp --dport 21 -m state --state
NEW --syn -j ACCEPT

—However, now passive FTP is a problem since
the server sends the PORT command.

—Again, if the ip_conntrack_ftp module is loaded
before a passive connection takes place, the
RELATED state will allow this to work.

50Jim Guggemos

Diagnosing Firewall Problems

• If you have an application or service that is not working
when the firewall is enabled:
—Use the logs generated by netfilter:

tail –f /var/log/messages | grep …

—Use tcpdump (see man page for tcpdump(8)).
—Use lsof to show you processes that have ports open:

lsof –i (may append tcp or udp to restrict)

—Check the packet/byte counts that iptables maintains for
your rules to see which rules are being hit:
iptables –L [<chain>] –v -n

—Use nmap to port scan your host to see what snoopers
will see: http://www.insecure.org/nmap

—Look at the connection tracking table to debug stateful
inspection problems:
cat /proc/net/ip_conntrack

51Jim Guggemos

Diagnosing Firewall Problems
Notes about RPC

• Applications and services that use RPC will have
to have special provisions made to enable them
through the firewall.

• This example ruleset will function work with NFS
clients, but not completely since rpc.statd cannot
be seen from outside of the firewall.

• If you need to use RPC services, you will need to
write a script that takes the output of rpcinfo -p
and generates rules dynamically. This should be
run at the end of the booting process.

52Jim Guggemos

References

• Ziegler, Robert L. Linux Firewalls, Second
Edition. Indianapolis, Indiana: New Riders
Publishing, 2002. ISBN: 0-7357-1099-6.

• Zwicky, Elizabeth D., et al. Building Internet
Firewalls (2nd Edition). Sebastopol, CA: O’Reilly
& Associates, 2000. ISBN: 1-5659-2871-7.

• Many great documents and howtos can be found
at the netfilter documentation page:
http://netfilter.samba.org/documentation/index.html

—Networking Concepts HOWTO
—Packet Filtering HOWTO
—NAT HOWTO
—“iptables connection tracking” Tutorial

	Title
	Overview
	Internet Networking
	Overview
	ICMP
	UDP
	TCP
	Miscellaneous

	Host-Based Firewalls
	Firewall Basics
	Stateful (Dynamic) Packet Filtering
	IPTables Basics
	Rules, Chains, and Actions
	Command Syntax

	Building a Stand-Alone Ruleset
	Things to think about
	Example Assumptions
	Example Rules
	Important Points

	Diagnosing Firewall Problems
	References

